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Abstract. We study smooth transformations(r) = ho(r) + g(h(Br)) of potentialsVo(r) =

ho(r) + h(Br) for which exact bound-state solutions of Satlinger's equation are known.
Eigenvalue approximation formulae are obtained which provide lower or upper energy bounds
according to whether the transformation functignis convex or concave. Detailed results
are presented for perturbed Coulomb potentials of the fottn) = —a/r + br + cr? and

V() = =1/r + pIn@r +r?).

1. Introduction

Interesting exact solutions of Sétinger's equation may be generated by first choosing a
wavefunctiony and then finding the corresponding potential This idea goes back to a
paper published by Wigner [1] in 1929 and has enjoyed a considerable amount of attention
since then [2,3]. The following simple example will serve to fix ideas. If we choose
the wavefunction for the bottom of thE” angular-momentum subspace to #&r) =
rlexp(—3(r + Br?)Y/" (0, ¢), then Schbdinger's equationy = (—A + V)¢ = Ev is
satisfied if

V(r):—%+,3r+(,3r)2 and E=@+2)B—3. (1)

Such exact eigenvalues are certainly useful but they stop short of treating, for example,
the more general probleVi(r) = —a/r + br + cr? in which the coefficientga, b, ¢} are

arbitrary.
In this paper we use exact eigenvalues such as (1) to estimate the spectrum corresponding

to a potentialV (r) of the form
1
Vi) =——"+gpr+ (Br)?) 2

whereg is a smooth transformation. We shall show that the bottom of the spectruih of
in the Y;" subspace may be approximated by the expression

o 2 f'(1) oy L
E~gglg{f(r)—h(21+3)+rf(r>—4}

where
f(0) =gBt + (B1)?) h(t) =t + 12,

1 E-mail: rhall@abacus.concordia.ca

0305-4470/96/092127+08$19.5@C) 1996 IOP Publishing Ltd 2127



2128 R L Hall and N Saad

This formula provides a lower bound or an upper bound to the exact ground-state energy
E according to whether the transformation functignis convex (= = >) or concave
( = ). This allows us, for example, to estimate the spectrum corresponding to
V(r) = —a/r + br + cr? for arbitrary {a, b, c}.

At the cost of more complicated conditions on the coefficients, the collection (1) of
exact eigenvalues may be extended to certain excited states incluein@ In section 2
we summarize the more detailed exact results for the perturbed Coulomb case. Since similar
results may be obtained for other families of potentials sucl @$ = ar? + br* + cr®,
we formulate the approximation theory in section 3 in a general framework suitable for
application to all exact solutions of this general type. In section 4 we present numerical
results for a number of specific examples some of which are compared with known results
that have been obtained by other methods.

2. Perturbed Coulomb potentials

In his interesting work of solving Dirac’s equations in the presence of magnetic field, Hautot
[4] introduced some methods for solving certain second-order differential equations. One of
these methods deals with the radial Shinger equation with the potential energy operator:

V(r) = _D + Br + Ar? A #£0. ()
r

The author obtained [5] exact solutions only for certain relations between the constants
A, B, and D. He achieved this by applying the kinetic energy operator to an appropriate
wavefunction and using the standard procedure of comparing the coefficients of the induced
recurrence relations. More precisely, introducing

Y(r) = exp(_; (ﬂrz " ;%)) Yart  n=012.. (4
k=0

into the radial Schodinger equation (in units = 2m = 1)

@ 2d I0+1
dr2  rdr r2

~|—|:E+?—Br—Ar21|> Y(r)=0 (5)

we obtain, after some algebra, the following three-term recursion relation between the
coefficientsq; for (k=0,1,2,...):

B
[(k+2)(k+ 2 + 3]ars2 + [D - ﬁ(k +2+ l)} ry1
2
+|:E—\/Z(2k+21+3)+fA}ak=O. (6)

This recurrence relation terminatesajf,1 = 0, that is to say

2

B
E=E,1,=«/Z(2n+21+3)—ﬂ. (7)

Equations (6) and (7) give the following: + 1) x (n 4+ 1) determinant which provides
the relations betweer, B, and D (for a given value of:) to ensure the existence of the
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solutions of (5) (note that_,, =0,m =1,2,...):
ap bo
c1 a b]_
Co dr bz
=0 (8)

Ch—1 dap-1 bn—l
Cn an

where
ar=D— (B/NA)k+1+1)
b= (k+ 1)k +2 +2)
cx = Ey — N A2k 4+ 21 + 1) + (B/VA).

Since this early work the technique of generating exact solutions for @dalger operator
has been widely applied [6-14], either to obtain some interesting potential functions with
known eigenvalues, or to investigate the quality of perturbation theory.

3. Transformed potentials

In order to lay down a general framework for the approximation method we are about to
construct, we consider a Sddinger Hamiltonian of the form

H = — A+ho(r) + f(r) 9

whereho(r) is a fixed potential term and'(r) is a smooth transformatiop(k(8r)) of a
second scaled potential tera(Br), B > 0. Such a transformation always exists by the
monotonicity ofs. For example, wheho(r) = —1/r andh(Br) = Br + (Br)? andyg is the
identity transformation, the problem is exactly solvable foe 0. Indeed, in this case, we
have from (7) and (8) thaky, is given by (1).
The tools required to develop our approximation theory arise from the geometric
relationship between a potential shape and théesgtof the energy trajectories generated by
it. This technique was first introduced to analyse the spectrum of the many-body problem
[15]; a more complete account and recent applications may be found in [16]. For the
transformed Hamiltonian
I+1

H=—2——=+g0(pr) (10)
we have for the tangent line &k, g(h)) that

a() +h(BOr) = ) (11)

wheret is the point of contact betweengr) and f(r) = g(h(8r)). The parametera(r)
and g(¢) are determined as follows. Suppose thats an invertible function defined by
¢ (tB(t)) = tf’'(¢t), where’ denotes differentiation with respect to Then, using (11), we
have

B(t) = (1/)p tf (1))

1, (12)

a(t) = f(t) —h(@ ~@f 1))).

Differentiation of (12) with respect to gives
CO ey, (13)

B'(®)
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On the other hand, the energy formula (1) with (11) gives
ca(®) =a@®) + BN +3) - 3. (14)
By differentiating (14) with respect toand using the extreme conditief) (r) = 0, we get
o/ (1)

— = =—(2+3). 15
50 (2 +3) (15)
Now, since
B(1) =tf'(t) = BN 1B(1)) (16)
we have from (13), (15), and (16) that
_tf'(
=55 17)
Thus
(SO
th<21+3>—(2]+3). (18)
Finally we obtain using (12), (17), and (14) that
_ 1@ i 1
€oz(t)—f(t)—h<21+3)+lf (") =4 (19)

Equations (18) and (19) establish the energy bounds of the Hamiltonian (10). Indeed solving
(18) with respect ta, for any smooth functiory (r) = g(h(Br)), yields the optimal solution
f theneg (f) gives [16] lower bounds when the transformatjpis convex and upper bounds
wheng is concave.

Equations (18) and (19) represent a complete recipe for a bound to the lowest
eigenvaluef = 0) of any Coulomb problem perturbed by a smooth transformati@n of
h(Br) = Br + (Br)?. Although we shall not develop the more general case in detail here,
the method fom > 0 works as follows. If we consider the Séginger equation (5) with
A = B?, we have from (7) thak,, = B(2n + 2/ + 3) — 211. The parameteD is related to
B through a recurrence relation which can be obtained by expanding the determinant (8)
about the last row or column and usidg= B:

Dy =[D — (k+1+1)]Dy_1— 2Bk(k + 2 + 1) Dy_»

(20)
k=0,1,2,... D=0 D=1

For example Dy = D — (I + 1) which implies the conditioD =/ + 1. In the same manner
as we discussed above we obtain the corresponding formulae (18) and (19), but instead of
(21 + 3) we have, in general2n + 2/ + 3).

A case of physical interest occurs [17] when= 1 and B approaches zero. In this
case, we have from (20) that ~ [ + 2, this allows us to keep the potentiaJ(r) = —D/r
as a fixed term. Thus, we have

2 r/
ﬂ/(’ f'@®

2l + 5) =@+
1@
2A+7
which gives a bound to the first excited statetbt= — A —( + 2)/r + g(h(Br)), whereg
is any tranformation oh.

1
eu(t)=f(t)—h< )+tf’(t)—4
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4. Numerical results and conclusion

One of the interesting points concerning the bounds we have obtained is the variety of
approximations made possible by different choices of the transformatiior example, in
section 3, we can takg(r) = g(h(Br)) = ur + Ar2 or f(r) = g(h(r)) = p{e+ — 1},
for arbitrary u and A etc, where in each case equations (18) and (19) give us a bound. A
second point is the possibility of using the approximation with different base functions
For example, if we considér(r) = —1/r+r and use an appropriate smooth transformation,
the method we have discussed can easily give a bound for the eigenvalues of the harmonic
oscillator Hamiltonian perturbed by'(r) = g(h(r)). This particular example can be
discussed in terms of the theory presented in [16], but the method presented here is much
simpler and more general: simpler in the sense that its derivation and the formulae it
produces are simple; more general in the sense that, given an arbitrary smooth transformation
g, formulae (18) and (19) provide an eigenvalue bound without any further ado.

Our first example is

1 2
H=—A—+4ur+air
r

whereyn anda are arbitrary real parameters. That is to say, we consfder = ur + Ar2.
It is clear that the transformation exists for such ary. Equation (18) gives

A+ 2urP + (2 +3) — (2 +3)%=0 (21)

while the energy formula (19) gives

wt? + 2xt8 wt? + 2xt8 1
1) =3 4 2ur — -, 22
o (1) +2u 13 213 2 (22)
100
80
60 r Upper Bounds
A
40 L
Lower Bounds
20
0 1 i i i
0 2 4 6 8 10
12

Figure 1. Two parametric regions: if. < v/, the formulae (21) and (22) yield a lower bound
for the ground-state energy of the Hamiltoniéin= — A —* + ur +1r2, while ;& > /4 yields
an upper bound.
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Table 1. Eigenvalues o = —% A —% + ur + Ar2 for different values ofx andx. Comparison
between result&® of Bessiset al [13], using the moment method, and the present work which
yields the lower bound:".

w L EB E*
0 1 0.593771 0.514 269
0 10 4.150124 3.979871
0 100 16.805 248 16.475 256
0 1000 59.375 469 58.762742
0 5000 138.557196 137.624947
-2.0 1 -1.171674 —-1.431541
-1.0 1 -0.226187 -0.380198
-0.5 1 0.196 002 0.081963
0.5 1 0.971616 0.922717
1 1 1.332845 1.311628
Table 2. Eigenvalues off = — A —,—1. + pur + Ar2 for different values ofx andx. Comparison

between the lower bound' given by formulae (18) and (19) and accurate val&ésfound
by direct numerical integration.

w A EN E*

0.001 0.001-0.236 —0.238

0.001 1 1.786 1.707

0.01 0.01 -0.152 —0.153

0.01 1 1.795 1.717

0.1 0.1 0.378 0.354

0.1 1 1.885 1.814

0.5 1 2278 2.239

1 2 3.657 3.629

Table 3. Eigenvalues ofH = — A f% + wIn@r + r?) for different values ofu. Comparison
between the upper boung given by (23) and accurate valu& found by direct numerical
integration.

m EN EY

0.0001 —0.24978 —0.24975
0.0005 —0.24889 —0.24875
0.001 —-0.24778 —0.24752
0.005 -0.23897 —0.23765
0.01 —-0.22810 —0.22545
0.05 -0.14568 —0.13227
0.1 —0.05153 —0.024 56
0.5 0.52033 0.65413

For arbitraryi, u, andl, equations (21) and (22) give the required approximation. We
may use any rootfinding method [18] to solve (21) faand substitute this in (22) to yield

the approximate eigenvalue. The natural question which arises now is whgttgis an
upper or lower bound. The answer depends on the convexitf(of. the proof of this

may be found in [16]. Indeed we can easily demonstrate using elementary differentiation
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that if © < +/A, theneg (7) is a lower bound for the Scbdinger Hamiltonian with potential
—1/r + ur + Ar%; and if VA < u, theneg(7) is an upper bound. In figure 1 we plot these
two independent regions: along the cuve= ©? we have the exact solution. By means
of a scale transformation (to remove t%a’n front of the Laplacian) we can compare our
bounds with the results of Bess¢al [13]: these are shown in table 1. These results show
that our simple formulae can be used to obtain a satisfactory bound for a class of potentials
generated by without the lengthy derivations required in each case by the moment method
[13] or the shifted IN expansion [14]. In table 2 we report our results using (18) and (19)
for a range of values oft and A and, for comparison, the corresponding accurate results
obtained by direct numerical integration of (3).

As another example of a smooth transformatigh(8r)) we considerf (r) = pIn(r +
r?), wherey is arbitrary real. The Hamiltonian becomes

1 2
H=—-—A—+puln(r+r9
r
and the formulae (18) and (19) provide an upper bound ¥ 0 or a lower bound ifx < O:
ut® + 2u+2 +31* — (A +2)(2 +3)t — (A +3?=0

142 u t+ 212 wot4 27 1
EO’U):”In(HIZH“(lM>_21+3< 1+1 )<1+21+3 1+r ) &

(23)

A comparison of some results obtained by this formula and the corresponding results
obtained by direct numerical integration are reported in table 3.

The main point of the approach described in this paper is to provide a way to generate
simple approximate formulae to be used for exploratory purposes. Once the appropriate
ranges of the potential parameters are established, direct numerical methods could be used
to find more accurate eigenvalues.
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